Line Impedance Stabilization Is In Its Seventieth Year, and Going
Strong

What a long, strange trip it’s been...
Introduction?

Seventy years ago this month, the 5 uH Line Impedance Stabilization Network (LISN) made its
debut in MIL-I-6181B.2 Aside from the EMI receiver itself, the LISN is one of the oldest and most
successful pieces of EMI test equipment in existence. And while EMI receivers have changed a great
deal since 1953 (see images in the companion MIL-1-6181B anniversary article in this issue), the 5
uH LISN is not only still with us, but almost unchanged and used in commercial aviation and the
automotive industry, as well as military applications worldwide.3 Other LISNs have come and gone,
and others are with us still. The way we use LISNs has changed over time, not always for the better.
But the LISN is here to stay in the world of EMI testing.

In The Beginning

Radio receivers used on WWII Army aircraft were quite susceptible to very low levels of noise on
their primary (28 Vdc) power input. Further, unshielded antenna lead-ins (see MIL-1-6181B
anniversary article in this issue) were very susceptible to capacitive crosstalk from noisy 28 Vdc
electrical power feeds. The first EMI standards tried to control both these radio frequency
interference (rfi) coupling paths. Prior to 1953, Figure 1 shows that JAN-I-225% used a pair of 4 uF
bypass capacitors in shunt (8 uF total capacity between power feeder and ground plane) and a 10’
length of power wire suspended not more than %” from the ground plane for what they called
power supply stabilization. Given that JAN-I-225 conducted and radiated emission measurements
covered 0.15 - 20 MHz, one can work out (roughly) that the resonant frequency of the 10’ wiring
and 8 uF capacity occurred below the test frequency range, so that the impedance looking back into
the capacitors through 10’ of wiring was inductive in character.

JAN-1-225 was superseded in 1953 by MIL-1-6181B, which included both required impedance
(Figure 2) and construction drawings (Figure 3) for the 5 uH LISN. These same drawings, with
minor tweaks, appeared in RTCA/DO-160 for commercial aircraft avionics, up to 1989.5 After that,
they required the extended impedance control as in DEF STAN 59-411, but don’t include the
construction details of DEF STAN 59-411. Two tweaks already appeared in MIL-1-6181Cé which
replaced MIL-1-6181B in 1957: a 1 kQ bleeder resistor from the EMI port center conductor to case,
and the removal of the 1 () resistor in series with the input side 1 uF filter capacitor. The upper
frequency of the controlled impedance bounced around some over the years. MIL-I-6181B has it at
25 MHz, as does MIL-1-6181D7 (1959), but the intervening “C” in 1957 pushed it out to 100 MHz. It
had settled down to 30 MHz in most specifications and standards, as that was the upper limit for
conducted emissions and radiated emissions with the rod antenna. But in the past few decades,
various specifications have pushed the upper end as far up as 400 MHz for rf conducted
susceptibility, and the automotive world (CISPR 258) has pushed it to 100 MHz for conducted
emissions.
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Figure 1: JAN-1-225 EMI test set-up, showing details of how line impedance stabilization was achieved
without a “LISN in a box.”
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Figure 2: MIL-I-6181B 5 uH LISN impedance plot.
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Figure 3: LISN construction details in MIL-1-6181B



It would surely be gratifying to the originator of the 5 uH LISN that his work has gained this much
success and acceptance worldwide. Who was this person, and how did the 5 uH LISN come about in
the first place? The author is indebted to Mr. A. T. Parker (1915 - 2000), for the following historical
snippet. Mr. Parker founded Solar Electronics, a designer and supplier of EMI test equipment.
Previously he had worked at the Stoddart Aircraft Radio Company, which was the company that
produced the first commercial 5 uH LISN. In Mr. Parker’s own words:

“Early in WW2, an aircraft propulsion engineer named Alan Watton working for the Air
Corp was concerned about the r.f,, being conducted along wiring in a military aircraft of the
Douglas DC-3 type. He devised the first Line Impedance Stabilization Network which
simulated the impedance of the d.c. power leads in the aircraft. It used a five microhenry
choke and a means for coupling voltages developed across this inductance to a 50 ohm
receiver over the frequency range 150 KHz to 25 MHz.”9

This is all Mr. Parker has to say about its inception. The following deductions are the author’s own.

The DC-3 (military version C-47 “Skytrain”) was all aluminum. Aluminum aircraftreturn current
on structure, except where inductance causes excessive voltage drop. No such problem with dc
power. Electrical power was from engine-mounted generators. Engine centerlines were about
three meters from the aircraft centerline. Thus, using a nominal value such as one microhenry per
meter for a wire suspended above a ground plane, 5 uH seems a reasonable value if the
measurement was taken in the cockpit-mounted breaker boxes, which act as the point of
distribution for electrical power in the aircraft. This point is critical. People often assume that a
LISN represents the impedance the test sample sees as-installed in the platform. This is not the
case.1% As per Figure 4, a LISN simulates the common bus impedance seen by all loads, so that noise
currents drawn by a culprit load, acting through the common bus impedance, generate a noise
potential inflicted on all other victim loads.
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Figure 4: A LISN simulates the common bus impedance, not power source-to-load impedance.

It is specifically this property of a LISN that allowed it to be used in MIL-1-6181B through “D” (the
last revision prior to MIL-STD-461) in mirror image roles when measuring conducted emissions
(Figure 5) and conducted susceptibility (Figure 6).
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Figure 5: MIL-I-6181B conducted emission set-up (figure actually copied from MIL-I-6181C, because
easier to see what is going on for instructional purposes).
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Figure 6: MIL-1-6181B conducted susceptibility set-up (figure actually copied from MIL-1-6181C,
because easier to see what is going on for instructional purposes).

As Time Goes By

In all versions of MIL-1-6181B-D, a LISN is inserted in each power feeder, ac or dc. The return is
always through the ground plane. But Navy ships never return current on structure, and Navy EMI
specification MIL-I-16910A11! reflected that practice, inserting a 5 uH LISN in both feeder and
return. When all the Service- and platform-specific EMI specifications released prior to 1967 were
superseded by the Tri-Service EMI standards MIL-STD-46112 and MIL-STD-46213, it was the Navy



practice of inserting line impedance stabilization in each power conductor that was adopted for Tri-
Service use. Thatis, instead of running return current back through the ground plane, it is
returned through a wire, instead. This has several problematical consequences that reverberate
down to the present day. Before delving into that issue, we should note that MIL-STD-461 and MIL-
STD-462 1967 releases followed a new practice introduced in MIL-STD-826,1* replacing the 5 uH
LISN with a 10 microfarad feed-through capacitor. This then became the standard practice for a
quarter-century, until MIL-STD-461D15 and MIL-STD-462D1¢ reinstated rf potential instead of
current control. This necessitated a LISN again, albeit now a 50 uH LISN in lieu of the original 5 uH
LISN, for reasons related further on. We return once again to Mr. Parker for the rationale behind
current measurements in lieu of measuring rf potential across a LISN.17 This is follow-on to the
material quoted earlier from reference 9.

So the Line Impedance Stabilization Network (LISN) was born. It was a pretty good
simulation of that particular aircraft and the electrical systems it included. But then
someone arbitrarily decided to use this artificial impedance to represent any power line.

At any rate, this impedance suddenly began appearing in specifications which demanded its
use in each ungrounded power line for determining the conducted EMI (then known as RFI)
voltage generated by any kind of a gadget. The resulting test data, it was argued, allowed the
government to directly compare measured RFI/EMI voltages from different test samples
and different test laboratories.

No one was concerned about the fact that filtering devised for suppressing the test sample
was based on this artificial impedance in order to pass the requirements, but that the same
filter might have no relation to reality when used with the test sample in its normal power
line connection.

Not until 1947, that is. At that time, this same Alan Watton, a propulsion engineer having no
connection with the RFI/EMI business, decided to rectify the comedy of errors which had
misapplied his original brainchild. He was in a position to place a small R and D contract
with Stoddart for the development of two probes; a current measuring probe and a voltage
measuring probe. Obviously, he felt that one needed to know at least two parameters for a
true understanding of conducted interference...18

As it turned out, Stoddart was successful in developing a current probe based on Alan
Watton'’s suggestions regarding the toroidal transformer approach which is still the primary
basis used today. However, the development of the voltage measurement probe suffered for
lack of sensitivity. Watton’s hope had been to provide a high impedance voltage probe with
better sensitivity than was then available for measurement receivers designed for rod
antennas and 50 ohm inputs. Since this effort failed and Watton’s funds (and probably his
interest in the subject) faded out of the picture, the program came to a halt.

This'meant that the RFI/EMI engineer could either measure EMI voltage across an artificial
impedance which varied with frequency, or he could measure EMI current flowing through
a circuit of unknown r.f. impedance. Either way, the whole story is not known. In spite of the
unknown impedance, the military specifications began picking up the idea of measuring
EMI current instead of voltage...

The author’s take on this is that what Watton was after was a Thévenin-like model of the test
sample: “open circuit” output rf potential, and short-circuit rf current. By this means, one could then
predict noise potentials and currents into any arbitrary power source impedance. This
interpretation is bolstered by material in the appendix of MIL-STD-462D:

The (LISN) impedance is standardized to represent expected impedances in actual



installations and to ensure consistent results between different test agencies. Previous
versions of MIL-STD-462 used 10 microfarad feedthrough capacitors on the power leads.
The intent of these devices was to determine the current generator portion of a Norton
current source model. If the impedance of the interference source were also known, the
interference potential of the source could be analytically determined for particular
circumstances in the installation. A requirement was never established for measuring the
impedance portion of the source model. More importantly, concerns arose over the test
configuration influencing the design of power-line filtering. Optimized filters are designed
based on knowledge of both source and load impedances. Significantly different filter
designs will result for the 10 microfarad capacitor loading versus the impedance loading
shown in Figure 7 of the main body.

The concern over designing an EMI filter for a specific (but different) source impedance is of the
same type that Watton was concerned about a half-century earlier.

The more things change, the more they stay the same!

Completing our “as time goes by theme,” it is worth noting why MIL-STD-462D went with a 50 uH
LISN instead of the 5 uH LISN. In fact, the original proposal for MIL-STD=-462D going in was the 5 uH
LISN. The same section of the MIL-STD-462D appendix says,

A specific 50 microhenry LISN was selected to maintain a standardized control on the
impedance as low as 10 kHz.

The low frequency end of the 5 uH LISN is 150 kHz. The desire to begin making rf potential
measurements well below 150 kHz nixed the selection of the 5 uH LISN. In turn, the reason for
wanting to make rf potential measurements down to audio frequencies was based on the previous
quarter-century of making CEO3 measurements down to audio frequencies. They wanted the break
between CE101 and CE102 to be roughly the same as between CE01 and CE03. None of which is to
say that the 50 uH LISN is a better simulation of most vehicle electrical bus impedances...

Simple Things Become Complicated!®

From MIL-STD-826 (1964) forward, the practice of placing an impedance stabilizing device in each
ungrounded power lead (both feeder and return) resulted in at best questionably useful data. When
a single device is used, the measured rf potential or current is simply that in the loop comprised of
LISN, power feeder, load (test sample), and ground plane. Using two such devices results in
measuring vector sums of differential mode (dm) and common mode (cm) currents/potentials.

Figures 7a & b show differential and common mode current paths when current returns above
structure on a dedicated ground wire - i.e., isolated from chassis ground within the test sample.
Inspection of figures'7a and 7b indicates that when there is an above ground current return path,
differential and common mode currents sum in the feeder, but subtract in the return, as indicated in
Figure 7c. Figure 7d shows how all current, regardless of the current-generating mechanism, is
constrained to flow in the same path in the original structure return 5 uH LISN configuration.

This means that with above ground current return, as shown in Figure 7c, measured single line
currents or rf potentials look similar but not identical. The traces are identical for feeder and return
when one or the other mode dominates, but where they are of similar amplitude and add on the
feeder and subtract on the return, they differ. Separation of cm and dm modes to assist filter design
has been a topic of interest since the late 1970s.20.21,22

It is of note that in most standards, if there is any question as to how power current will return
(structure or dedicated wire), the default test method is to use a pair of LISNs, and measure the
vector sums and differences of common and differential mode signals on each LISN separately. Itis



not obvious why this is the go-to default. Particularly for radiated emissions, this technique
decreases the radiation efficiency of the differential mode component of the composite noise
(especially if, as is common, the wire pair is twisted). Figure 7d makes it clear that using a single
LISN keeps the radiation efficiency of each mode identical.

When we know that current will be returned on a dedicated wire, not on structure, a better
technique than controlling emissions on each individual lead is controlling emissions by mode.
Separating modes may be done directly off the LISN (references 20 - 22) or using current probes.
Regardless, if we control emissions via mode, not line, we can then assign limits based on what the
modes actually affect:

Differential mode noise currents cause ripple.
Common mode currents cause radiated emissions.

Therefore when the feeder and return wires are twisted or held tightly together throughout the
vehicle, it is reasonable to relax the differential mode limit compared to the common mode limit.
Even if no radios operate in the conducted emission frequency range, it may be worthwhile to
control common mode emissions to limit crosstalk to adjacently placed cables that might carry
potentially susceptible low level signals.23

\ 1
Feeder —- :

L]
(r\) lgn ' L lanj

]

Return -

Power : I :
source , :

O T T i 7777 7 r 7 r7r 7 7r 77 r s s

Figure 7a: Differential mode current path

Feeder
Return

Power
Source

Vs s s T IS

Figure 7b: Common mode current path




Figure 7c: CM & DM currents adding and subtracting in feeder and return

Feeder —» |

Power
Source
loop

| I S

W s I

Figure 7d: All noise currents flow in same path when structure is the return path.

=
&N EO_
oo

A concrete and illuminating example of the problem of LISN misuse may be found in a report by the
author dating to the late ‘90s.24 This report.showed that the (now obsolete) FCC Class B 48 dBuV
conducted emission limit was in fact 20 dB too stringent for differential mode noise, but was
precisely correct for common mode noise. The problem arose because the original work done to
establish the 48 dBuV limit was performed using a single 5 uH LISN, but the FCC test method was
based on a pair of (50 uH) LISNs:25 It was not the disparity in the LISN impedance but the mode
separation inherent in a pair of LISNs that demonstrated the disparity.

Mode Separation Techniques

Various three-port commercial devices used to separate modes are shown below. These devices all
have two input ports for connection to feeder and return LISN EMI ports and a single output port to
a spectrum analyzer or EMI receiver. Some mode separators include both modes in one enclosure;
these appear to be four-port devices but in all cases only three ports are engaged at anyone time.
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Figure 8: Differential mode rejection network principle of operation. A CMRN adds a transformer to
invert the resistive addition function to subtraction
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Figure 10: The author’s well-worn collection of EMC Services LISNMATE (DMRN) and LISNMARK
(CMRN) mode separators. At this writing these are not commercially available.
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Figure 11: Fischer Custom Communications offers the two-in-one CMRN and DMRN in a single unit
trade named LISN-UP

Figure 12: Tekbox combination cm & dm separators in a single box26



Conclusion

Alan Watton bequeathed us a great gift some seventy years ago. It is up to us to use it wisely, and
well. To echo Mr. Parker about the comedy of errors, and intentionally misquote Gall's Law, “A
complex system that works poorly is invariably found to have evolved from a simple system that
worked well.”
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